\(\int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\) [387]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 36, antiderivative size = 40 \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=-\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 B \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

-2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*B*sin(d*x+c)/d/
cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {21, 2716, 2719} \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {2 B \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \]

[In]

Int[(a*B + b*B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])),x]

[Out]

(-2*B*EllipticE[(c + d*x)/2, 2])/d + (2*B*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rubi steps \begin{align*} \text {integral}& = B \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 B \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-B \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 B \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.00 \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=B \left (-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\right ) \]

[In]

Integrate[(a*B + b*B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])),x]

[Out]

B*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(182\) vs. \(2(64)=128\).

Time = 2.08 (sec) , antiderivative size = 183, normalized size of antiderivative = 4.58

method result size
default \(-\frac {2 B \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(183\)

[In]

int((B*a+b*B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b),x,method=_RETURNVERBOSE)

[Out]

-2*B*(-2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ell
ipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2
*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 96, normalized size of antiderivative = 2.40 \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {-i \, \sqrt {2} B \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} B \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, B \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{d \cos \left (d x + c\right )} \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*B*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) +
 I*sqrt(2)*B*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) +
2*B*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

Giac [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int \frac {B\,a+B\,b\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int((B*a + B*b*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))),x)

[Out]

int((B*a + B*b*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))), x)